Adaptive Adjustment Strategy for Walking Characteristics of Single-Legged Exoskeleton Robots

Author:

Lu Zhiguo,Ye Dehong,Chen Qingcai,Liu Chong,Dong Hu,Cheng Dexin

Abstract

In order to achieve the normal walking of hemiplegic patients, this paper proposes a single-legged exoskeleton robot according to the bionics principle, and presents an adaptive adjustment strategy for walking characteristics. The least square regression analysis is used to fit the angle data of healthy leg joints by cubic polynomials, and then the parametric design of the fitted curve is carried out to obtain the influence of the user’s stride frequency and stride length on the joint angle, so that the gait of the exoskeleton can be adjusted in real time according to the stride length and stride frequency of the healthy leg to realize normal walking. In order to verify the effectiveness of the adaptive adjustment strategy proposed in this paper, the angle of leg joints under normal gait is collected in advance. In addition, an adult male is chosen as the subject to walk on the horizontal ground wearing the single-legged exoskeleton as the experiment. The experimental results show that the designed exoskeleton is reasonable, and the adaptive adjustment strategy proposed in this paper can make the exoskeleton adapt well and follow the gait of healthy legs to achieve a more natural walking state.

Funder

National Natural Science Foundation of China

the National Key R&D Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exo skeleton pertinence and control techniques: A state-of-the-art review;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-02-05

2. Quantum splitting of multi-qubit gates;Optical and Quantum Electronics;2023-12-29

3. Simulation of image optical processing based on artificial intelligence in the motion adaptive adjustment system of aerobics athletes;Optical and Quantum Electronics;2023-12-29

4. Use of artificial intelligence in assistive devices;Artificial Intelligence in Tissue and Organ Regeneration;2023

5. Active Assistive Design and Multiaxis Self-Tuning Control of a Novel Lower Limb Rehabilitation Exoskeleton;Machines;2022-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3