Voltage Profile Enhancement and Loss Minimization Using Optimal Placement and Sizing of Distributed Generation in Reconfigured Network

Author:

Haider WaseemORCID,Hassan S Jarjees Ul,Mehdi ArifORCID,Hussain ArifORCID,Adjayeng Gerardo Ondo Micha,Kim Chul-HwanORCID

Abstract

Power loss and voltage instability are major problems in distribution systems. However, these problems are typically mitigated by efficient network reconfiguration, including the integration of distributed generation (DG) units in the distribution network. In this regard, the optimal placement and sizing of DGs are crucial. Otherwise, the network performance will be degraded. This study is conducted to optimally locate and sizing of DGs into a radial distribution network before and after reconfiguration. A multi-objective particle swarm optimization algorithm is utilized to determine the optimal placement and sizing of the DGs before and after reconfiguration of the radial network. An optimal network configuration with DG coordination in an active distribution network overcomes power losses, uplifts voltage profiles, and improves the system stability, reliability, and efficiency. For considering the actual power system scenarios, a penalty factor is also considered, this penalty factor plays a crucial role in the minimization of total power loss and voltage profile enhancement. The simulation results showed a significant improvement in the percentage power loss reduction (32% and 68.05% before and after reconfiguration, respectively) with the inclusion of DG units in the test system. Similarly, the minimum bus voltage of the system is improved by 4.9% and 6.53% before and after reconfiguration, respectively. The comparative study is performed, and the results showed the effectiveness of the proposed method in reducing the voltage deviation and power loss of the distribution system. The proposed algorithm is evaluated on the IEEE-33 bus radial distribution system, using MATLAB software.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3