A Two-Step Approach to Scheduling a Class of Two-Stage Flow Shops in Automotive Glass Manufacturing

Author:

Qiao Yan1ORCID,Wu Naiqi12ORCID,Li Zhiwu1,Al-Ahmari Abdulrahman M.3ORCID,El-Tamimi Abdul-Aziz3,Kaid Husam3

Affiliation:

1. Institute of Systems Engineering and Collaborative Laboratory for Intelligent Science and Systems, Macau University of Science and Technology, Macao 999078, China

2. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China

3. Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Abstract

Driven from real-life applications, this work aims to cope with the scheduling problem of automotive glass manufacturing systems, that is characterized as a two-stage flow-shop with small batches, inevitable setup time for different product changeover at the first stage, and un-interruption requirement at the second stage. To the best knowledge of the authors, there is no report on this topic from other research groups. Our previous study presents a method to assign all batches to each machine at the first stage only without sequencing the assigned batches, resulting in an incomplete schedule. To cope with this problem, if a mathematical programming method is directly applied to minimize the makespan of the production process, binary variables should be introduced to describe the processing sequence of all the products, not only the batches, resulting in huge number of binary variables for the model. Thus, it is necessary and challenging to search for a method to solve the problem efficiently. Due to the mandatory requirement that the second stage should keep working continuously without interruption, solution feasibility is essential. Therefore, the key to solve the addressed problem is how to guarantee the solution feasibility. To do so, we present a method to determine the minimal size of each batch such that the second stage can continuously work without interruption if the sizes of all batches are same. Then, the conditions under which a feasible schedule exists are derived. Based on the conditions, we are able to develop a two-step solution method. At the first step, an integer linear program (ILP) is formulated for handling the batch allocation problem at the first stage. By the ILP, we need then to distinguish the batches only, greatly reducing the number of variables and constraints. Then, the batches assigned to each machine at the first stage are optimally sequenced at the second step by an algorithm with polynomial complexity. In this way, by the proposed method, the computational complexity is greatly reduced in comparison with the problem formulation without the established feasibility conditions. To validate the proposed approach, we carry out extensive experiments on a real case from an automotive glass manufacturer. We run ILP on CPLEX for testing. For large-size problems, we set 3600 s as the longest time for getting a solution and a gap of 1% for the lower bound of solutions. The results show that CPLEX can solve 96.83% cases. Moreover, we can obtain good solutions with the maximum gap of 4.9416% for the unsolved cases.

Funder

the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3