On the Impact of Condensation and Liquid Water on the Radial Turbine of a Fuel Cell Turbocharger

Author:

Wittmann TimORCID,Lück SebastianORCID,Bode Christoph,Friedrichs Jens

Abstract

The air-management system of a proton exchange membrane fuel cell (PEMFC) is responsible for supplying the fuel cell stack with ambient air at appropriate conditions. The compressor of the air-management system can be partly driven by utilizing the fuel cell exhaust gas in a turbine. The fuel cell exhaust is partially or fully saturated with water vapor. When the exhaust gas is expanded in the turbine, supersaturation occurs. This leads to the nucleation of droplets and their subsequent growth by condensation. This study provides an overview and understanding of the various phenomena caused by condensation and liquid water in the turbine of a PEMFC air-management system. The basis for this work is previously published numerical simulations that focused on individual aspects of the above phenomena. The present work revisits these results and puts them in context to provide a comprehensive understanding. Important phenomena are the effects of condensation on turbine performance through phase change losses, release of latent heat and thermal throttling. In addition, the released latent heat offers a power potential for downstream turbine stages. Through these effects, condensation can also impact the entire air-management system. However, condensation may occur unevenly, causing a circumferential asymmetry of the turbine outflow. Liquid water in the turbine can lead to droplet erosion, corrosion, and water-induced damage. In summary, it is essential to consider condensation and liquid water when developing turbines for PEMFC air-management systems.

Funder

German Federal Ministry of Transport and Digital Infrastructure

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3