Temperature-Sensitive Points Optimization of Spindle on Vertical Machining Center with Improved Fuzzy C-Means Clustering

Author:

Shi HuORCID,Qu Qiangqiang,Xiao Yao,Liu Qingxin,Tao Tao

Abstract

The heat generated by motors and bearings of machine tools has a significant impact on machining accuracy. Error modeling and compensation has proven to be effective ways to reduce thermal errors and improve accuracy. An improved fuzzy c-means (FCM) clustering algorithm is proposed to determine the optimized temperature sensitive points for thermal error modeling of a spindle on the vertical machining center. The sensors are deployed to measure the temperature of different positions of machine tools, and the improved FCM algorithm is used to classify the measured data. Combined with the F-test statistics of multiple linear regression, the optimal temperature points of each group are selected. The improved FCM clustering algorithm significantly reduces the multicollinearity problem among temperature measuring points and avoids them falling into local optimization. The modeling method was verified through experiments on two types of vertical machining centers. The results show that the accuracy of the spindle in Y and Z directions of the machine tools was increased by more than 75%, and the model has good robustness, demonstrating application prospects in the selection of temperature measuring points of the spindle system of vertical machining centers.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference20 articles.

1. Error compensation in machine tools—A review Part II: Thermal errors;Ramesh;Int. J. Mach. Tools Manuf. Des. Res. Appl.,2000

2. International Status of Thermal Error Research (1990);Bryan;CIRP Ann.,1990

3. Yang, J.G. (1998). Error Synthetic Compensation Technique and Application for NCMachine Tools. [Ph.D. Thesis, Shanghai Jiao Tong University].

4. A review on spindle thermal error compensation in machine tools;Li;Int. J. Mach. Tools Manuf.,2015

5. Optimization of measuring points for machine tool thermal error based on grey system theory;Li;Int. J. Adv. Manuf. Technol.,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3