Experimental Study on the Influence of Micro-Abrasive and Micro-Jet Impact on the Natural Frequency of Materials under Ultrasonic Cavitation

Author:

Song TianjiaoORCID,Zhu Xijing,Ye Linzheng,Zhao Jing

Abstract

The higher the natural frequency of the material is, the more resistant it is to deformation under impulse loading. To explore the influence of micro-abrasive and micro-jet impact on the natural frequency and resonance amplitude value of the material under ultrasonic cavitation, 18 sets of single-factor controlled variable ultrasonic cavitation experiments were carried out on a polished specimen of 6061 aluminum alloy (30 mm × 30 mm × 10 mm). With the increase of the abrasive content in the suspension, the natural frequency of the workpiece first increased, then decreased and remained stable. With the increase of the ultrasonic amplitude, the resonance amplitude value of the material increased, reaching the maximum at 0.1789 m·s−2 and then decreased. The effect of ultrasonic amplitude on the natural frequency of the material was greater than that of the abrasive content, and the effect of the abrasive content on the common amplitude value was greater than that of the ultrasonic amplitude. This research provides a certain reference significance for exploring the influence of power ultrasonic micro-cutting on material properties and avoiding the occurrence of resonance phenomenon of the workpiece under different working conditions.

Funder

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3