Various Feature-Based Series Direct Current Arc Fault Detection Methods Using Intelligence Learning Models and Diverse Domain Exclusion Techniques

Author:

Dang Hoang-Long1ORCID,Kwak Sangshin1ORCID,Choi Seungdeog2

Affiliation:

1. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea

2. Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA

Abstract

The expansion of DC electrical distribution systems necessitates advancements in detecting and mitigating DC arc events, a significant contributor to fire accidents in low-voltage DC distribution systems. Detecting DC arc faults poses considerable challenges, making them a major safety concern in DC power lines. Conventional approaches mainly rely on arc current, which can vary during normal operation, potentially leading to false alarms. Moreover, these methods often require manual adjustment of detection thresholds for different systems, introducing the risk of malfunction. This study proposes an advanced arc fault recognition procedure that extracts and utilizes various key features for the DC arc detection. This work investigated new various features, which are the square average, the average, the median, the rms, the peak-to-peak, and the variance values, to find out which one can be the most effective features to detect the DC arc failure. The results of this detection process show good evidence for the effectiveness and reliability of the proposed malfunction detecting plan.

Funder

Korea government

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3