Detection of Demagnetization Faults in Electric Motors by Analyzing Inverter Based Current Data Using Machine Learning Techniques

Author:

Walch Daniel1ORCID,Blechinger Christoph1ORCID,Schellenberger Martin1,Hofmann Maximilian1,Eckardt Bernd1,Lorentz Vincent R.H.1ORCID

Affiliation:

1. Fraunhofer Institute IISB, 91058 Erlangen, Germany

Abstract

Demagnetization of the rotor magnets is a significant failure mode that can occur in permanent magnet synchronous machines (PMSMs). Early detection of demagnetization faults can help change system parameters to reduce power output or ensure safety. In this paper, the effects of demagnetization faults were analyzed both in simulation and experiments using the example of drone motors. An approach was investigated to detect even minor demagnetization faults that does not require any additional sensing effort. Machine learning (ML) techniques are used to analyze the phase current data directly received from the inverter to enable anomaly detection. For this purpose, the phase current is transformed by the Fast Fourier Transform (FFT), the spectral data is then reduced in dimensionality, followed by an anomaly detection algorithm using a one-class support vector machine (OC-SVM). To ensure simplified initialization of the ML model without the need for training sets of damaged drives, only data from magnetically undamaged motors was used to train the models for anomaly detection. Different selections of considered harmonics and different metrics were investigated using the experimental data, achieving a precision of up to 99%, a specificity of up to 98%, and an accuracy of up to 90%.

Funder

European Union’s Horizon 2020 Framework Programme

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3