On-Machine Measurement and Error Compensation for 6061 Aluminum Alloy Hexagonal Punch Using a Turn-Milling Machine

Author:

Kuo Cheng-HsienORCID,Chen Po-Cheng

Abstract

For machining parts with complex shapes, consisting of computer numerical control (CNC) machine tools, different CNC machine tools will be used according to the machining method. If the workpiece is removed for off-machine measurement after machining, when the size is incorrect, it will need to be returned to the CNC machine tool for secondary machining. In this case, the workpiece surface quality and machining accuracy will be affected, which is very time-consuming. On-machine measurement and complex machine center is a key to solve this problem. In the recent researches that the touch probe was integrated on three or five axis machine for error compensation and shape construction based on on-machine measurement, but turning-milling machine was rare. In addition, the most types of parts were thin-walled parts or thin web parts. In this study, a contact measurement system is integrated into a CNC combined turning-milling machine for on-machine measuring. Macro-programming is used to design the machining path of A6061-T6 aluminum alloy hexagonal punch, and the action of probe measurement is added to the machining path. As the measured data exceed the tolerance range, the calculated data are fed back to the controller for machining improvement by compensation. The finished hexagonal punch is measured in a 3D coordinate measuring machine and the error is compared. The experimental results show that the contact probe needs to be corrected before machining, and the size of the corrected workpiece can reach the tolerance range of ±0.01 mm. The size error of rough machining is larger than that of fined machining, and the size error of rough machining will increase with the length of the workpiece.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3