Effects of Different Hard Finishing Processes on Gear Excitation

Author:

Trübswetter MaximilianORCID,Götz JoshuaORCID,Kohn BernhardORCID,Otto MichaelORCID,Stahl KarstenORCID

Abstract

Gearboxes are essential in mechanical drive trains for power transmission. A low noise emission and thus an optimized excitation behavior is a substantial design objective for many applications in terms of comfort and operational safety. There exist numerous processes for manufacturing gears, which all show different properties in relation to the process variables and, therefore, differences in the resulting accuracy and quality of the gear flank. In this paper, the influence of three different manufacturing processes for hard finishing—continuous generating grinding, polish grinding and gear skiving—on the surface structure of gear flanks and the excitation behavior is investigated experimentally and analyzed by the application force level. A tactile scanning of the gear flanks determines the flank surface structure and the deviations from the desired geometry. A torsional acceleration measurement during speed ramp-ups at different load levels is used to analyze the excitation of the gears. The results show only a minor influence of the surface structure on the application force level. The excitation behavior is dominated by the influence of the flank modification and its deviation from the design values.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference28 articles.

1. A surface enveloping-assisted approach on cutting edge calculation and machining process simulation for skiving

2. Polish Grinding of Gears for Higher Transmission Efficiency;Graf,2015

3. Zahnrad- und Getriebetechnik: Auslegung-Herstellung-Untersuchung-Simulation;Klocke,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigations on tip relieving of spur gears by non-contact process;Materials and Manufacturing Processes;2023-02-10

2. Power skiving manufacturing process: A review;Mechanism and Machine Theory;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3