Detection for Disc Cutter Wear of TBM Using Magnetic Force

Author:

Han Jialin12,Xiang Hongjiang3,Feng Qiuyue3,He Jiangbo3,Li Rong3,Zhao Wensheng3

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. China Railway Construction Heavy Industry Corporation Limited, Changsha 410100, China

3. School of Mechanical Engineering, Xihua University, Chengdu 610039, China

Abstract

To replace the worn-out cutter of tunnel boring machines timely, it is crucial to inspect the cutter’s wear. In this work, a novel detection method based on magnetic force is proposed to overcome the drawback of nonlinearity in current detecting technology. The principle is that the magnetic force between the cutter and the permanent magnet linearly decreases with increasing wear. Firstly, the magnetic force is investigated by the finite element simulation to find the optimal placement of the permanent magnet to realize both high linearity and sensitivity. Secondly, a highly-sensitive force sensor with an S shape is designed to measure the magnetic force. The four strain gauges in the force sensor are combined into a Wheatstone bridge to suppress the common-mode effect, such as temperature. Experimental testing on the magnetic force is performed to verify the feasibility of the detection method. The testing result shows that the magnetic force linearly decreases with the increasing wear loss at a rate of −793 mN/mm. The accuracy of the detecting method approaches 1 mm, which is of the same order of magnitude as those in previous studies.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province of China

Chunhui Project Foundation of the Education Department of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3