Verification of a Body Freedom Flutter Numerical Simulation Method Based on Main Influence Parameters

Author:

Lei Pengxuan,Guo Hongtao,LYu Binbin,Chen Dehua,Yu Li

Abstract

The body freedom flutter characteristics of an airfoil and a fly wing aircraft model were calculated based on a CFD method for the Navier–Stokes equations. Firstly, a rigid elastic coupling dynamic model of a two-dimensional airfoil with a free–free boundary condition was derived in an inertial frame and decoupled by rigid body mode and elastic mode. In the fluid–solid coupling method, the rigid body was trimmed by subtracting the generalized steady aerodynamic force from the structural dynamic equation. The flutter characteristics were predicted by the variable stiffness method at a fixed Mach number and flight altitude. Finally, validation of the predicted body freedom flutter characteristics was performed through a comparison of theoretical solutions based on a Theodorsen unsteady aerodynamic model for airfoil and experimental results for a fly wing aircraft model. The mechanism of the influence of the bending mode stiffness and the position of the center of gravity on the body freedom flutter characteristics were briefly analyzed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3