Experimental Study of Robotic Polishing Process for Complex Violin Surface

Author:

Wahballa Hosham12,Duan Jinjun1,Wang Wenlong1,Dai Zhendong1ORCID

Affiliation:

1. Institute of Bio-Inspired Surface Engineering, School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Faculty of Engineering, Karary University, Khartoum 12304, Sudan

Abstract

This paper presents a robotic polishing process for complex violin surfaces to increase efficiency and minimize the cost and consumed time caused by using labor and traditional polishing machines. The polishing process is implemented based on modeling a smooth path, controlled contact force embedded with gravity compensation and material removal depth. A cubic Non-Uniform Rational Bases-Spline (NURBS) interpolation curve combined with an S-curve trajectory model is used to generate a smooth polishing path on a complex violin surface to achieve stable motion during the polishing process. An online admittance controller added to the fast gravity compensation algorithm maintains an accurate polishing force for equal removal depth on all polished surface areas. Then, based on Pythagorean theory, the removal depth model is calculated for the violin’s complex surface before and after polishing to estimate the accuracy of the polishing process. Experimental studies were conducted by polishing a wooden surface using the 6DOF robot manipulator to validate this methodology. The experimental results demonstrated that the robot had accurate polishing force based on the online admittance controller with gravity compensation. It also showed a precise proportional uniformity of removal depths at the different normal forces of 10, 15, and 20 N. The final results indicated that the proposed experimental polishing approach is accurate and polishes complex surfaces effectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3