Modeling and Optimization of a Micro-Channel Gas Cooler for a Transcritical CO2 Mobile Air-Conditioning System

Author:

Ullah Naveed,Ishaque Shehryar,Kim Man-HoeORCID,Choi SanghunORCID

Abstract

This study focuses on developing and optimizing of a microchannel gas cooler model for evaluating the performance of a transcritical CO2 mobile air-conditioning system. A simulation model is developed with the aid of MATLAB R2022a. A segment-by-segment modeling approach is utilized by applying the effectiveness-NTU method. State-of-the-art heat transfer and pressure drop correlations are used to obtain air and refrigerant side heat transfer coefficients and friction factors. The developed model is validated through a wide range of available experimental data and is able to predict a gas cooler capacity and pressure drop within an acceptable range of accuracy. The average errors for a gas cooler capacity and pressure drop are 3.79% and 10.24%, respectively. Furthermore, a parametric optimization method is applied to obtain optimal microchannel heat exchanger dimensions, including the number of tubes, microchannel ports, and passes. Different combinations were selected within the practical range to obtain optimal dimensions while keeping the total core volume constant. The simultaneous effect of the number of tubes, the number of ports in each tube, and the number of passes is determined. The objective of the current optimization technique is to minimize the pressure drop for the specific design capacity under different operating conditions without changing the overall volume of the gas cooler. The average pressure drop reduction for the optimal geometry as compared with the baseline geometry under all operating conditions is about 15%. The results from this study can be used to select an optimal geometric design for the required design capacity with a minimal pressure drop without the need for expensive prototype development and testing.

Funder

Korea Evaluation Institute of Industrial Technology

Korean government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference31 articles.

1. Kandlikar, S.G., Garimella, S., Li, D., Colin, S., and King, M. (2014). Heat Transfer and Fluid Flow in Minichannels and Microchannels, Butterworth-Heinemann.

2. Regulation (EU) No 517/2014 of The European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006;Schulz;Off. J. Eur. Union,2014

3. A New, Efficient and Environmentally Benign System for Car Air-Conditioning;Lorentzen;Int. J. Refrig.,1993

4. Fundamental Process and System Design Issues in CO2 Vapor Compression Systems;Kim;Prog. Energy Combust. Sci.,2004

5. CoilDesigner: A General-Purpose Simulation and Design Tool for Air-to-Refrigerant Heat Exchangers;Jiang;Int. J. Refrig.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3