Decentralized Adaptive Quantized Dynamic Surface Control for a Class of Flexible Hypersonic Flight Vehicles with Input Quantization

Author:

Zhao Wenyan1,Lu Zeyu1,Bi Zijian2,Zhong Cheng1,Tian Dianxiong1,Zhang Yanhui3,Zhang Xiuyu4,Zhu Guoqiang4ORCID

Affiliation:

1. Tangshan Power Supply Company, State Grid Jibei Electric Power Co., Ltd., Tangshan 063000, China

2. State Grid Jibei Electric Power Co., Ltd., Beijing 100031, China

3. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

4. School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China

Abstract

A control strategy for a certain class of hypersonic flight aircraft dynamic models with unknown parameters is proposed in this article. The strategy is adaptive dynamic surface input quantization control. To address the issues in conventional inversion control, a first-order low-pass filter and an adaptive parameter minimum learning law are introduced in the control system design process. This method has the following features: (1) it solves the problem of repeated differentiation of the virtual control law in the conventional back-stepping method, greatly simplifying the control law structure; (2) by using the norm of the neural network weight vector as the adaptive adjustment parameter instead of updating each element online, the number of adaptive adjustment parameters is significantly reduced, improving the execution efficiency of the controller; (3) the introduced hysteresis quantizer overcomes the disadvantage of the quantization accuracy deterioration when the input value is too low in the logarithm quantizer, improving the accuracy of the quantizer. Stability analysis has shown that all signals in the closed-loop system are semi-globally uniformly bounded, and simulation results have verified the effectiveness of the proposed adaptive quantized control scheme.

Funder

Shenzhen Basic Research Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3