Path Planning for 5-Axis CMM Inspection Considering Path Reuse

Author:

Zhao Wenzheng,Wang Xueqi,Liu Yinhua

Abstract

The 5-axis Coordinate Measuring Machine (CMM) is widely used for quality data collection of the machining parts, such as cylinder blocks and heads of the engines. High efficient inspection path planning for multiple feature groups from different stations is one of the key tasks for CMM application. In engineering practice, the inspection planning of diverse feature groups accounts for large labor cost and process development cycle. To improve the efficiency of path generation for the complex machining part, a five-axis CMM inspection path planning method considering path length, probe rotation and path reusability is proposed. Firstly, the measuring points (MPs) are classified based on feasible inspection direction cone and accessibility of the MPs to achieve the minimum times of probe rotation. Then, the rapidly exploring random trees with multi-root node (RRT-MRNC) algorithm is proposed to implement local path planning considering inspection path reuse. Furthermore, intra-group and inter-group path is generated simultaneously based on the proposed enhanced Genetic Algorithm (GA) algorithm. In order to evaluate the effectiveness of the proposed method, the cylinder block path planning case is used. Compared with the benchmark methods, the total planning time based on the proposed planning method for the dynamic tasks was reduced by 55.2% and 54.9% respectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3