Abstract
Compared with traditional machine tools, the micro machine tools have advantages of small volume, low cost, less energy consumption, high efficiency and high flexibility. Therefore, it is regarded as an important equipment for micro-cutting machining which has been used widely all over the world and. As a key component of the micro-cutting machine tools, the body structure directly influences the machining performance. Thus, an integral column and base structure for micro machining tools was proposed in this work, and the detailed structural parameters were designed based on parameter analysis. Besides, the static and dynamic performance of the proposed machine were analyzed and compared between the integral structure and the separated one. The deformation and stress of the proposed structures under typical working conditions were studied by numerical simulation, along with the natural frequencies, vibration modes and frequency response peaks. Further, optimization was performed on the integral body structure, the prototype of the micro-machine tool was trial-produced, and the positioning accuracy of each coordinate axis was qualitatively analyzed. In addition, the micro-milling test was carried out with 6061 aluminum alloy to show the performance of the novel cutting machine. The results revealed that the proposed integrated micro-machine bed structure is superior to the separated structure in terms of static deformation and harmonic response characteristics, with good comprehensive mechanical properties, greatly improved static and dynamic performance of the machine tool, significantly improved structural accuracy, improved processing quality of the specimen and good application value.
Funder
the Excellent Youth Project of Educational Committee of Hunan Province
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献