Developing and Testing the Proto Type Structure for Micro Tool Fabrication

Author:

Xiao Hang,Hu Xiaolong,Luo Shaoqing,Li WeiORCID

Abstract

Compared with traditional machine tools, the micro machine tools have advantages of small volume, low cost, less energy consumption, high efficiency and high flexibility. Therefore, it is regarded as an important equipment for micro-cutting machining which has been used widely all over the world and. As a key component of the micro-cutting machine tools, the body structure directly influences the machining performance. Thus, an integral column and base structure for micro machining tools was proposed in this work, and the detailed structural parameters were designed based on parameter analysis. Besides, the static and dynamic performance of the proposed machine were analyzed and compared between the integral structure and the separated one. The deformation and stress of the proposed structures under typical working conditions were studied by numerical simulation, along with the natural frequencies, vibration modes and frequency response peaks. Further, optimization was performed on the integral body structure, the prototype of the micro-machine tool was trial-produced, and the positioning accuracy of each coordinate axis was qualitatively analyzed. In addition, the micro-milling test was carried out with 6061 aluminum alloy to show the performance of the novel cutting machine. The results revealed that the proposed integrated micro-machine bed structure is superior to the separated structure in terms of static deformation and harmonic response characteristics, with good comprehensive mechanical properties, greatly improved static and dynamic performance of the machine tool, significantly improved structural accuracy, improved processing quality of the specimen and good application value.

Funder

the Excellent Youth Project of Educational Committee of Hunan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3