Turning Chatter Detection Using a Multi-Input Convolutional Neural Network via Image and Sound Signal

Author:

The Ho Quang Ngoc12,Do Thanh Trung1ORCID,Minh Pham Son1ORCID,Nguyen Van-Thuc1,Nguyen Van Thanh Tien34

Affiliation:

1. Faculty of Mechanical Engineering, HCMC University of Technology and Education, Ho Chi Minh City 70000, Vietnam

2. Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam

3. Department of Industrial Engineering and Management, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan

4. Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Nguyen Van Bao Street, Ward 4, Go Vap District, Ho Chi Minh City 70000, Vietnam

Abstract

In mechanical cutting and machining, self-excited vibration known as “Chatter” often occurs, adversely affecting a product’s quality and tool life. This article proposes a method to identify chatter by applying a machine learning model to classify data, determining whether the machining process is stable or vibrational. Previously, research studies have used detailed surface image data and sound generated during the machining process. To increase the specificity of the research data, we constructed a two-input model that enables the inclusion of both acoustic and visual data into the model. Data for training, testing, and calibration were collected from machining flanges SS400 in the form of thin steel sheets, using electron microscopes for imaging and microphones for sound recording. The study also compares the accuracy of the two-input model with popular models such as a visual geometry group network (VGG16), residual network (Restnet50), dense convolutional network (DenseNet), and Inception network (InceptionNet). The results show that the DenseNet model has the highest accuracy of 98.8%, while the two-input model has a 98% higher accuracy than other models; however, the two-input model is more appreciated due to the generality of the input data of the model. Experimental results show that the recommended model has good results in this work.

Funder

Ho Chi Minh City University of Technology and Education

Machines Editorial Board

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3