Piecewise Decoupling Tool Orientation Re-Scheduling for Four-Axis Reciprocal Toolpaths of Blades Based on S-θ Plane with Monotonicity Constraint

Author:

Li Jingsong,Song DeningORCID,Li Peiyao,Zhang Qiang,Li Jinghua,Ma Jianwei

Abstract

Reciprocal toolpaths with four-axis simultaneous motion of five-axis or four-axis machine tools are commonly used in the machining of blades which are widely applied in high-end equipment such as the aero-engine and the marine steam turbine. Due to the complex geometry of the blades, the tool orientation always suffers from frequent swing for this kind of toolpaths, which induces unnecessary acceleration/deceleration of the feed axes, thus degrading processing efficiency and quality. Although there are tool orientation optimization methods aiming at solving the above problem, they are mainly proposed for universal processing of the toolpaths for complex surfaces. Different from them, this paper proposes a piecewise decoupling tool orientation re-scheduling method for this kind of toolpath specifically, which takes full use of the characteristic of the reciprocal toolpaths of the blades, and takes the monotonous variation of rotation axes as an additional constraint. The re-scheduling process is realized based on the construction of a S-θ plane, where the scheduling problem is converted to the adjustment of a S-θ curve inside a feasible channel. Through two procedures, namely linearization scheduling and control-point assigning-based smoothing, the tool orientation path expressed by the S-θ curve can be effectively scheduled in a piecewise manner, and the smoothness between two adjacent pieces of the toolpaths can be ensured directly. The whole algorithm is lightweight and does not involve complex iterative operations or functional optimization solutions. Simulation and experimental tests verify the feasibility and superiority of this method. The results show that the machining efficiency of the blade is improved by 24.5%, due to the reduction of the requirement on highest feed-axis kinematics parameters after rescheduling. In addition, compared with the existing methods, the proposed method not only can improve the dynamics of feed axes in multi-axis machining, but also has advantages in computational complexity and monotonic variation property of the tool orientation.

Funder

National Nature Science Foundation of China

China Postdoctoral Science Foundation

Nature Science Foundation of Heilongjiang Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3