Systematic Literature Review Predictive Maintenance Solutions for SMEs from the Last Decade

Author:

Hassankhani Dolatabadi Sepideh,Budinska Ivana

Abstract

Today, small- and medium-sized enterprises (SMEs) play an important role in the economy of societies. Although environmental factors, such as COVID-19, as well as non-environmental factors, such as equipment failure, make these industries more vulnerable, they can be minimized by better understanding the concerns and threats these industries face. Only a few SMEs have the capacity to implement the innovative manufacturing technologies of Industry 4.0. The system must be highly adaptable to any equipment, have low costs, avoid the need of doing complex integrations and setups, and have future reliability due to the rapid growth of technology. The goal of this study was to provide an overview of past articles (2010–2020), highlighting the major expectations, requirements, and challenges for SMEs regarding the implementation of predictive maintenance (PdM). The proposed solutions to meet these expectations, requirements, and challenges are discussed. In general, in this study, we attempted to overcome the challenges and limitations of using smart manufacturing—PdM, in particular—in small- and medium-sized enterprises by summarizing the solutions offered in different industries and with various conditions. Moreover, this literature review enables managers and stakeholders of organizations to find solutions from previous studies for a specific category, with consideration for their expectations and needs. This can be significantly helpful for small- and medium-sized organizations to save time due to time-consuming maintenance processes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3