Affiliation:
1. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
2. School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430070, China
Abstract
Motor faults not only damage the motor body but also affect the entire production system. When the motor runs in a steady state, the characteristic frequency of the fault current is close to the fundamental frequency, so it is difficult to effectively extract the fault current components, such as the broken rotor bar. In this paper, according to the characteristics of electromagnetic force and vibration, when the rotor eccentricity and the broken bar occur, the vibration signal is used to analyze and diagnose the fault. Firstly, the frequency, order, and amplitude characteristics of electromagnetic force under rotor eccentricity and broken bar fault are analyzed. Then, the fault vibration acceleration value collected by a one-dimensional dilated convolution pair is extracted, and the SeLU activation function and residual connection are introduced to solve the problem of gradient disappearance and network degradation, and the fault motor model is established by combining average ensemble learning and SoftMax multi-classifier. Finally, experiments of normal rotor eccentricity and broken bar faults are carried out on 4-pole asynchronous motors. The experimental results show that the accuracy of the proposed method for motor fault detection can reach 99%, which meets the requirements of fault motor detection and is helpful for further application.
Funder
National Natural Science Foundation of People’s Republic China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering