Influence of Laser Surface Texture on the Anti-Friction Properties of 304 Stainless Steel

Author:

Li Xiashuang1,Li Guifeng1,Lei Yuesui1,Gao Lei1,Zhang Lin1,Yang Kangkang1

Affiliation:

1. College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

Abstract

To enhance the anti-friction properties of 304 stainless steel, friction experiments were conducted on it after laser surface texturing. The influences of laser scanning speed, repetition frequency, processing times, laser beam line spacing, and lattice spacing on the friction properties of 304 stainless steel were investigated by contrast tests under annular filling mode. The results revealed that laser texturing improved the anti-friction properties of 304 stainless steel. The friction coefficient of the sample surface decreased first and then increased with the increase in scanning speed, repetition frequency, processing times, laser beam line spacing, and lattice spacing. Based on this, process optimization found that a stainless steel surface with good anti-friction properties could be obtained when the laser power was 0.3 W, the repetition frequency was 50 kHz, the scanning speed was 80 mm/s, the laser beam line spacing was 1 μm, the lattice spacing was 200 μm, and the number of processing times was two. Finally, scanning electron microscope (SEM) characterization of wear morphology on the sample surface showed that the laser textured surface could collect debris during effective friction, which reduced the occurrence of abrasive and adhesive wear. Meanwhile, the actual contact area of the friction pair was effectively reduced, thereby reducing friction force and wear. This study provided experimental data and a theoretical basis for improving the friction properties of the 304 stainless steel surface and laid the foundation for its reliable use under friction and wear conditions.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Shaanxi province

Science and technology Project of Education Department of Shaanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3