Evaluation of Counter-Rotating Dual-Rotor Permanent-Magnet Flux-Switching Machine with Series and Parallel Stator Teeth

Author:

Ullah Wasiq1ORCID,Khan Faisal1,Akuru Udochukwu Bola2ORCID,Khan Bakhtiar3,Khalil Salar Ahmad4

Affiliation:

1. Electric Machine Design Research Lab, Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus Abbottabad, Abbottabad 22060, Pakistan

2. Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0183, South Africa

3. Department of Electrical Engineering, Karakoram International University, Gilgit 15100, Pakistan

4. Department of Electrical Engineering (Power), USPCAS-E, National University of Science and Technology, Islamabad 24090, Pakistan

Abstract

In this study, the focus is on the magnetic path formation and its effects on the performance of a counter-rotating dual-rotor permanent-magnet flux-switching machine (CR-DRPMFSM) for direct-drive counter-rotating wind power generation, based on different stator slot and rotor pole combinations. To fully exploit rotor-shaft bore and improve fault-tolerant design, as well as increase torque density, dual-rotor topologies with the capability for dual electrical and dual mechanical ports are investigated. Moreover, the direct-drive counter-rotating wind power generation technique offers a brushless topology, thus reducing maintenance cost and improving energy conversion efficiency compared to single-blade wind turbine systems. Using finite element analysis (FEA), the inherent magnetic coupling of the series and parallel paths shows varied impacts on the electromagnetic performance of four different CR-DRPMFSMs based on the slot/pole combinations (MI to MIV) considered in this study. The key electromagnetic performance indices, such as torque, cogging torque, torque ripple, power factor, and efficiency, show proportionate variation to the coupling level. A comparative analysis shows that MI exhibits higher average torque, lower torque ripples, and high efficiency, reaching 90% with a power factor of 0.6. As an optimal design, an MI test prototype is developed. The experimental test prototype validates the FEA results under no-load and on-load conditions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3