Numerical and Experimental Investigations of Axial Flow Fan with Bionic Forked Trailing Edge

Author:

Liang Zhong1ORCID,Wang Jun1ORCID,Wang Wei1,Jiang Boyan1,Ding Yanyan1,Qin Wanxiang2

Affiliation:

1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. Guangdong Sunwill Precising Plastic Co., Ltd., Foshan 528305, China

Abstract

To improve the performance of the aerodynamic properties and reduce the aerodynamic noise of an axial flow fan in the outdoor unit of an air conditioner, this study proposed a bionic forked trailing-edge structure inspired by the forked fish caudal fin and implemented by modifying the trailing edge of the prototype fan. The effect of the bionic forked trailing edge on the aerodynamic and aeroacoustic performance was investigated experimentally, and detailed analyses of the blade load and internal vortex structures were performed based on large-eddy simulations (LES). It is shown that the bionic forked trailing edge could effectively adjust the blade load distribution, reduce the pressure difference between the pressure side and suction side near the trailing edge of the blade tip region, and weaken the intensity and influence range of the inlet vortex (IV) and the tip leakage vortex (TLV). The discrete noise caused by the vortices in the rotor tip area was also reduced, particularly at the blade passing frequency (BPF) and its harmonic frequency. The experimental results confirmed the existence of an optimal bionic forked trailing-edge structure, resulting in the maximum power-saving rate γ of 7.5% and the reduction of 0.3 ~ 0.8 dB of aerodynamic noise, with an included angle θt of 13.5°. The detailed analysis of the internal vortex structures provides a good reference for the efficiency improvement and noise reduction of axial flow fans.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3