Synchronization of Four Axisymmetrically Distributed Eccentric Rotors in a Vibration System

Author:

Chen XiaozheORCID,Liu Junqi,Zhang Jiaqi,Li Lingxuan

Abstract

This paper studies synchronization of a class of even pairs and symmetrically distributed eccentric rotors in a vibration system of a single mass body. A vibration system driven by four ERs with circular distribution structure and the same rotating direction is adopted as the dynamic model. The motion differential equations of the system are established based on Lagrange equation. The angular velocity and the phase of each rotor are perturbed by the average value of the synchronous velocity. The state equation of the system is obtained by applying the averaging method. According to the necessary condition of the steady-state motion, the synchronization condition and the dimensionless coupling torques of the system are deduced. The stability condition of the synchronous motion is derived by applying Lyapunov indirect method. The distribution law of the steady-state phase difference is discussed qualitatively by the numerical analysis of the theoretical results. Then combined with the numerical results, five sets of experiments are carried out on the experimental machine, which includes the sub-resonant state and the super-resonant state. The experimental results show that this vibration system has two super-resonant motion states and one sub-resonant motion state. The experiment proves the correctness of the theory, which can provide theoretical guidance for the design of this kind of vibration machine.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3