Abstract
In the grinding process, the friction energy generated by grains and the workpiece in the grinding zone will affect the service life of the grinding wheel. Ultrasonic-vibration-assisted grinding (UVAG) can reduce the friction force and reduce the generation of friction energy during grinding. In this work, the wear mechanism of grinding wheels in UVAG is discussed in detail from the perspective of the grain grinding trajectory and tribology. The results show that UVAG has a smaller friction force than conventional grinding (CG). Furthermore, when the initial included angles of grains are 90° and 150°, the friction energy of a single grinding surface in UVAG is reduced by 24% and 37% compared with that of CG, respectively. In UVAG, the grains are prone to microfractures, and the self-sharpening ability of the grinding wheel is enhanced, which can obtain a lower grinding force and better grinding surface quality.
Funder
National Natural Science Foundation of China
Wenzhou Basic Scientific Research Project
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献