Hybrid 3D Printing of Functional Smart Hinges

Author:

Raymond Lily1,Bandala Erick1,Hua Weijian1,Mitchell Kellen1,Tsabedze Thulani1,Leong Kaitlin1,Zhang Jun1,Jin Yifei1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Nevada Reno, Reno, NV 89557, USA

Abstract

Smart hinges fabricated using three-dimensional (3D) printing have been accepted in the aerospace, robotics, and biomedical fields since these devices possess a shape memory characteristic. Shape memory polymers (SMPs) are the preferred materials for creating smart hinges due to their ability to achieve programmable complex geometries. However, fabricating SMPs with embedded components remains a challenge due to the constraints of current 3D printing methods and material limitations. This study investigated the use of a hybrid 3D printing method, direct ink writing (DIW), and embedded 3D printing (e-3DP) to print smart hinges with an embedded circuit to act as a strain sensor. The main components of the SMP included tert-Butyl acrylate (tBA) and aliphatic urethane diacrylate (AUD), but this SMP ink had a low viscosity and could not be used for DIW or e-3DP. Fumed silica (FS) was added to the SMP to tune its rheology, and it was shown that the FS concentration significantly affected the rheological properties, dry-out process, filament geometries, and self-supporting capabilities. This study presents a hybrid 3D printing approach for creating smart hinges with internal strain sensors in one step, demonstrating the versatility of DIW/e-3DP. The findings from this work provide a foundational and reliable technical solution to efficiently fabricate functional, self-monitoring, smart devices from SMPs for diverse applications.

Funder

Nevada NASA Space Grant Consortium

National Science Foundation Graduate Research Fellowship Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3