A Nonlinear Magnetic Stabilization Control Design for an Externally Manipulated DC Motor: An Academic Low-Cost Experimental Platform

Author:

Acho LeonardoORCID

Abstract

The main objective of this paper is to present a position control design to a DC-motor, where the set-point is externally supplied. The controller is conceived by using vibrational control theory and implemented by just processing the time derivative of a Hall-effect sensor signal. Vibrational control is robust against model uncertainties. Hence, for control design, a simple mathematical model of a DC-Motor is invoked. Then, this controller is realized by utilizing analog electronics via operational amplifiers. In the experimental set-up, one extreme of a flexible beam attached to the motor shaft, and with a permanent magnet fixed on the other end, is constructed. Therefore, the control action consists of externally manipulating the flexible beam rotational position by driving a moveable Hall-effect sensor that is located facing the magnet. The experimental platform results in a low-priced device and is useful for teaching control and electronic topics. Experimental results are evidenced to support the main paper contribution.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference36 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3