Kinematic Optimization Design and Performance Simulation of Novel 5-DOF Parallel Machining Robots with Spatial Layout

Author:

Wang Ruoyu,Niu Zhili,Chen Kaixuan,Sun Tao

Abstract

High efficiency and precision machining of complex components with spatial free-form surface features is facing significant scientific challenges, which put forward higher requirements for the design of machining equipment. Considering the requirements of engineering practice on the rotation ability, motion ability, stiffness performance and mass of equipment, two novel parallel five degree of freedom (5-DOF) machining robots with spatial layout are proposed. This kind of robot is approximately centrally symmetric, with reasonable constraint and driving wrench design, and greatly releases the flexibility of the spindle. A multi-objective optimization approach incorporating the NSGA-II algorithm is used to optimize the kinematic performance of the robots. According to the cooperative equilibrium criterion, the optimal virtual prototype parameters for the two types of robots are selected and contrasted. Then, the static performance of the more optimal virtual prototype is verified using finite element analysis. The numerical simulation demonstrates that the designed 5-DOF machining robot offers satisfactory static behavior and flexibility, which is of significant application value.

Funder

National Natural Science Foundation of China

State Key Laboratory of Digital Manufacturing Equipment and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3