On Drum Brake Squeal—Assessment of Damping Measures by Time Series Data Analysis of Dynamometer Tests and Complex Eigenvalue Analyses

Author:

Gräbner Nils1ORCID,Schmid Dominik1,von Wagner Utz1

Affiliation:

1. Department of Mechatronics and Machine Dynamics, Institute of Mechanics, Technische Universität Berlin, 10623 Berlin, Germany

Abstract

Brake squeal—an audible high-frequency noise phenomenon in the range between 1 kHz and 15 kHz resulting from self-excited vibrations—is one of the main cost drivers while developing brake systems. Increasing damping is often a crucial factor in the context of self-excited vibrations. Countermeasures applied for preventing brake squeal have been investigated particularly for disk brakes in the past. However, in recent years, drum brakes have once again become more important, partly because of the issue of particle emissions. Concerning noise problems, drum brakes have a decisive advantage compared to disk brake systems in that the outer drum surface is freely accessible for applying damping devices. This paper focuses on the fundamental proving and evaluation of passive damping measures on a simplex drum brake system. To obtain a detailed understanding of the influence of additional damping on the squealing behavior of drum brakes, extensive experimental investigations are performed on a brake with an intentionally introduced high squealing tendency in the initial configuration. This made it possible to investigate the influence of different types of damping measures on their effectiveness. Techniques from the field of big data analysis and machine learning are tested to detect squeal in measured time series data. These techniques were remarkably reliable and made it possible to detect squeal efficiently even in data that was not generated on a traditional costly NVH brake dynamometer. To investigate whether the simulation method usually used for the simulation of brake squeal is applicable to depicting the influence of additional damping in drum brakes, a complex eigenvalue analysis was performed with Abaqus, and the results were compared with those from the experiments.

Funder

Deutsche Forschungsgemeinschaft

AL-KO Kober SE

German Research Foundation

Open Access Publication Fund of TU Berlin

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimal model identification of drum brake squeal via SINDy;Archive of Applied Mechanics;2024-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3