Experimental Study on Tribological and Leakage Characteristics of a Rotating Spring-Energized Seal under High and Low Temperature

Author:

Liu Dengyu1ORCID,Zhao Jun12ORCID,Li Shuangxi1,Zhao Xinni1,Huang Lele1

Affiliation:

1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

2. Division of Machine Elements, Luleå University of Technology, 97187 Luleå, Sweden

Abstract

A spring-energized seal, whose PTFE plastic shell has excellent self-lubrication and a low temperature stability, is used widely in liquid fuel valves’ rotating end-face seals. However, in practical application, temperature has a larger effect on not only the physical and tribological properties of materials, but also on the leakage performance of spring-energized rings. Thus, a high and low temperature sealing test of the spring-energized seal that applies to an engine was carried out. In this paper, the leakage characteristics, friction torque and wear characteristics of a spring-energized ring under different temperatures were studied. The friction torque at high temperature was less than that at normal temperature, and a low temperature could effectively reduce the wear amount of PTFE material. In order to study the influence of temperature on PTFE filled with graphite, the friction and wear test of PTFE-2 was carried out. The results showed that the amount of wear of PTFE-2 was only 27.8% of that at the normal temperature but the friction coefficient was three times larger when the temperature was −45 °C.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3