A Compact Three-Dimensional Two-Layer Flexible Hinge

Author:

Lobontiu Nicolae1ORCID,Moses Morgan1,Hunter Jozef1ORCID,Min Daniel1,Munteanu Mircea Gh.2

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, University of Alaska Anchorage, ECB 301L, 3310 UAA Dr Anchorage, Anchorage, AK 99508, USA

2. Dipartimento Politecnico di Ingegneria e Architettura, Università degli Studi di Udine, 33100 Udine, Italy

Abstract

The paper proposes a new three-dimensional flexible hinge formed of several serially linked straight- and circular-axis segments that are disposed of in two layers. The novel hinge configuration is capable of large displacements and can be implemented in precision-compliant mechanisms that need to cover large spatial workspaces. Based on simplified geometry, an analytical compliance model is formulated that connects the loads to the displacements at one end of the hinge. Finite element simulation and experimental prototype testing of actual-geometry hinge configurations confirm the analytical model predictions. A related compliance-based analytical model evaluates the maximum loads that can be applied to the hinge and the resulting displacements. The two small-deformation analytical models are subsequently utilized to investigate the relationship between geometric parameters and the hinge performance qualifiers.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3