Abstract
The effect of the computational model and mesh strategy on the springback prediction of the thin sandwich material made of micro-alloyed steel was investigated in this paper. To verify the chosen computational strategy, a comparison of the experimentally obtained specimen (U-bending) with the FEA result was performed. The Vegter yield criterion combined both with the isotropic and kinematic hardening law was used for the calculation. In addition, the effect of the deformation mesh element (surface and volume) on the accuracy of the springback prediction was investigated. It was concluded that the choice of the volume deformation mesh does not significantly improve the accuracy of the results. Moreover, it is quite a time-consuming approach. The much greater influence was monitored by concerning the selection of hardening law, where the anisotropic one was more suitable to be used on the springback prediction of a given sandwich material.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献