Performance Comparison of Recent Population-Based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components

Author:

Alkan BugraORCID,Kaniappan Chinnathai Malarvizhi

Abstract

The optimisation of complex engineering design problems is highly challenging due to the consideration of various design variables. To obtain acceptable near-optimal solutions within reasonable computation time, metaheuristics can be employed for such problems. However, a plethora of novel metaheuristic algorithms are developed and constantly improved and hence it is important to evaluate the applicability of the novel optimisation strategies and compare their performance using real-world engineering design problems. Therefore, in this paper, eight recent population-based metaheuristic optimisation algorithms—African Vultures Optimisation Algorithm (AVOA), Crystal Structure Algorithm (CryStAl), Human-Behaviour Based Optimisation (HBBO), Gradient-Based Optimiser (GBO), Gorilla Troops Optimiser (GTO), Runge–Kutta optimiser (RUN), Social Network Search (SNS) and Sparrow Search Algorithm (SSA)—are applied to five different mechanical component design problems and their performance on such problems are compared. The results show that the SNS algorithm is consistent, robust and provides better quality solutions at a relatively fast computation time for the considered design problems. GTO and GBO also show comparable performance across the considered problems and AVOA is the most efficient in terms of computation time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference53 articles.

1. A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment

2. A Method to Assess Assembly Complexity of Industrial Products in Early Design Phase

3. Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing;Wang,2011

4. Metaheuristic algorithms in modeling and optimization;Gandomi,2013

5. The Whale Optimization Algorithm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3