Simulation Analysis of Skew Collision of Needle Roller Bearing Used in Precision Cycloid Reducer

Author:

Sun Yue1,Zhang Ying-Hui1,He Wei-Dong1

Affiliation:

1. School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China

Abstract

In order to improve the service life of the needle roller bearing used in a precision cycloid reducer, and to reveal the skew and collision phenomenon of the needle roller bearing, based on the force analysis of the transmission mechanism of the cycloid reducer and considering the friction between the cycloid wheel, needle roller, cage, and crank shaft, the dynamic contact between the rolling bodies is simulated by the Hertz elastic contact, where the contact between the cage pocket hole and needle roller is equivalent to the spring and damping, and a nonlinear dynamic model of the needle roller bearing is established. The influence of different load and cage clearances on the deflection impact of the rotating needle roller bearing is calculated. The results show that the inclination of rollers is different under different pocket clearances, and the larger the pocket gap, the greater the fluctuation of the roller inclination angle; the action force of the crank shaft on the roller suppresses the deflection of the roller; the impact force of the roller on the cage has periodicity, which is consistent with the impact force of the crank shaft on the roller. The impact force of the cage is different under different loads, and the greater the load, the more rollers there are in the bearing area, the larger the impact force is, and the smaller the impact force of the rollers in the middle of the bearing zone is, compared with that of the rollers on the two sides; when the load is small, a pocket cage gap of 0.3 mm is selected, and when the load is heavy, a pocket cage gap of 0.2 mm is selected in order to make the bearing run more smoothly.

Funder

National Key Research and Development Program of China

Foundation of Liaoning Educational Committee

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3