Millimeter-Wave Radar and Vision Fusion Target Detection Algorithm Based on an Extended Network

Author:

Qi Chunyang,Song Chuanxue,Zhang Naifu,Song Shixin,Wang Xinyu,Xiao FengORCID

Abstract

The need for a vehicle to perceive information about the external environmental as an independent intelligent individual has grown with the progress of intelligent driving from primary driver assistance to high-level autonomous driving. The ability of a common independent sensing unit to sense the external environment is limited by the sensor’s own characteristics and algorithm level. Hence, a common independent sensing unit fails to obtain comprehensive sensing information independently under conditions such as rain, fog, and night. Accordingly, an extended network-based fusion target detection algorithm for millimeter-wave radar and vision fusion is proposed in this work by combining the complementary perceptual performance of in-vehicle sensing elements, cost effectiveness, and maturity of independent detection technologies. Feature-level fusion is first used in this work according to the analysis of technical routes of the millimeter-wave radar and vision fusion. Training and test evaluation of the algorithm are carried out on the nuScenes dataset and test data from a homemade data acquisition platform. An extended investigation on the RetinaNet one-stage target detection algorithm based on the VGG-16+FPN backbone detection network is then conducted in this work to introduce millimeter-wave radar images as auxiliary information for visual image target detection. We use two-channel radar and three-channel visual images as inputs of the fusion network. We also propose an extended VGG-16 network applicable to millimeter-wave radar and visual fusion and an extended feature pyramid network. Test results showed that the mAP of the proposed network improves by 2.9% and the small target accuracy is enhanced by 18.73% compared with those of the reference network for pure visual image target detection. This finding verified the detection capability and algorithmic feasibility of the proposed extended fusion target detection network for visually insensitive targets.

Funder

Industry Independent Innovation Ability Special Fund Project of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference43 articles.

1. Pedestrian recognition using automotive radar sensors

2. Forward-looking automotive radar sensor;Ganci;Proceedings of the Intelligent Vehicles 95 Symposium,1995

3. Functional requirements of future automotive radar systems;Rasshofer;Proceedings of the European Radar Conference,2022

4. Fusion of millimeter wave radar and RGB-depth sensors for assisted navigation of the visually impaired;Wang;Proceedings of the Millimetre Wave and Terahertz Sensors and Technology, XI,2018

5. Research of Target Detection and Classification Techniques Using Millimeter-Wave Radar and Vision Sensors

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radar-vision fusion-based object detection for abnormal data;Fourth International Conference on Telecommunications, Optics, and Computer Science (TOCS 2023);2024-05-07

2. Editorial;Machines;2023-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3