Millimeter-Wave Radar and Vision Fusion Target Detection Algorithm Based on an Extended Network
Author:
Qi Chunyang,
Song Chuanxue,
Zhang Naifu,
Song Shixin,
Wang Xinyu,
Xiao FengORCID
Abstract
The need for a vehicle to perceive information about the external environmental as an independent intelligent individual has grown with the progress of intelligent driving from primary driver assistance to high-level autonomous driving. The ability of a common independent sensing unit to sense the external environment is limited by the sensor’s own characteristics and algorithm level. Hence, a common independent sensing unit fails to obtain comprehensive sensing information independently under conditions such as rain, fog, and night. Accordingly, an extended network-based fusion target detection algorithm for millimeter-wave radar and vision fusion is proposed in this work by combining the complementary perceptual performance of in-vehicle sensing elements, cost effectiveness, and maturity of independent detection technologies. Feature-level fusion is first used in this work according to the analysis of technical routes of the millimeter-wave radar and vision fusion. Training and test evaluation of the algorithm are carried out on the nuScenes dataset and test data from a homemade data acquisition platform. An extended investigation on the RetinaNet one-stage target detection algorithm based on the VGG-16+FPN backbone detection network is then conducted in this work to introduce millimeter-wave radar images as auxiliary information for visual image target detection. We use two-channel radar and three-channel visual images as inputs of the fusion network. We also propose an extended VGG-16 network applicable to millimeter-wave radar and visual fusion and an extended feature pyramid network. Test results showed that the mAP of the proposed network improves by 2.9% and the small target accuracy is enhanced by 18.73% compared with those of the reference network for pure visual image target detection. This finding verified the detection capability and algorithmic feasibility of the proposed extended fusion target detection network for visually insensitive targets.
Funder
Industry Independent Innovation Ability Special Fund Project of Jilin Province
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Radar-vision fusion-based object detection for abnormal data;Fourth International Conference on Telecommunications, Optics, and Computer Science (TOCS 2023);2024-05-07
2. Editorial;Machines;2023-04-14