Numerical Simulations of the Driving Process of a Wheeled Machine Tire on a Snow-Covered Road

Author:

Wang Di1,Wang Hui1,Xu Yan1,Zhou Jianpin1,Sui Xinyu1

Affiliation:

1. Department of Mechanical Engineering, Xinjiang University, Urumqi 830017, China

Abstract

Wheeled machines, such as agricultural tractors, snowplows, and wheeled mobile robots, usually work on icy or snow-covered roads. Therefore, it is very important to study the driving and slip resistance of the tires of these machines. In this paper, we investigate the driving behavior of tires on snow-covered terrain by means of numerical simulations. A high-fidelity snow-covered road model is established, and smoothed particle hydrodynamics (SPH) and the finite element method (FEM) are employed to account for the behaviors of the snow layers and the pavement, respectively. We use the node-to-surface algorithm for the contact interactions between the snow and the pavement. The SPH parameters for the snow are calibrated by means of a triaxial compression experiment. A simplified tire model is established as well, using the FEM, and the effectiveness of the model is demonstrated via comparisons with the experimental data in terms of stiffness. Finally, the tire driving performance on the snow-covered road is simulated, and the influence of the tire surface configuration, external load, inflation pressure, and snowpack compression on the tire traction behaviors is systematically investigated.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Technical Innovation Team for Robotics and Intelligence Devices

Uygur Autonomous Region Tianshan Talents in Xinjiang: A Technology Innovation Leading Talent project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Physical Prototype Based on the Theory of the Design of Wheels for Stair Climbing;2024 9th International Conference on Control and Robotics Engineering (ICCRE);2024-05-10

2. Snow and Ice Animation Methods in Computer Graphics;Computer Graphics Forum;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3