Author:
Zhao Guojuan,Jiang Shengcheng,Dong Kai,Xu Quanwang,Zhang Ziling,Lu Lei
Abstract
Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate for such a geometry error. In this study, an influence analysis method of geometric error based on the homogeneous coordinate transformation matrix and a compensation method was developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous coordinate transformation matrix in the proposed method, and an error matrix is integrated into the kinematic model of the four-axis machine tool as a means of studying the influence the geometric error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool considering the geometric error, a comprehensive geometric error compensation calculation model based on the Newton iteration was then constructed for calculating the tool path as a means of compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path for an off-axis optical lens was chosen for verification of the proposed method. The results showed that the proposed method can significantly improve the machining accuracy.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献