Durability Effects of Gas Nozzle Shape on Marine Two-Stroke Dual-Fuel Engines Using Numerical Analysis

Author:

Kim Jun-Soo1ORCID,Choi Jae-Hyuk2

Affiliation:

1. Korea Institute of Maritime and Fisheries Technology, 367, Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea

2. Division of Marine System Engineering, Korea Maritime and Ocean University, 727, Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea

Abstract

To comply with rules on air pollutants released by ships, two-stroke dual-fuel engines with liquefied natural gas (LNG) as the primary fuel have been marketed and offered to the market. However, there are still reports of gas-injection nozzles being damaged after they have been put on the market. Damage to the nozzles might result in secondary accidents in addition to worsening engine combustion conditions from improper injection. This study aims to gather fundamental information regarding the impact of different types of gas-injection nozzles on durability and to pinpoint the prerequisites for an ideal nozzle design. The results of total deformation and equivalent stress were examined for 27 nozzles that each variable was applied to in order to compare and confirm the durability by changing the nozzle shape. The cause of the nozzle temperature change according to the change in nozzle length was found to have the biggest impact on the total deformation, and it was confirmed that the effect was increased at higher temperatures. As the nozzle length increased and decreased by 2 mm, the average temperature of the nozzle increased by 47% and decreased by 53%, but the total deformation increased by 100% and decreased by 70%. It was verified that the equivalent stress was determined by the complicated interplay between the pressure inside the nozzle and turbulent kinetic energy impacted by a change in the nozzle shape. The factor that has the largest influence on the equivalent stress is the adjustment of the nozzle hole pipe angle, and the difference in equivalent stress according to this factor was found to be up to 118% and at least 44%. As a result, it has been proven that shortening the nozzle length, increasing the hole pipe angle, and enlarging the hole diameter are the most effective and expected to be used as basic data for future nozzle development.

Funder

Korea Institute of Marine Science & Technology Promotion

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3