A Novel Planning and Tracking Approach for Mobile Robotic Arm in Obstacle Environment

Author:

Yu Jiabin123ORCID,Wu Jiguang1,Xu Jiping123,Wang Xiaoyi4,Cui Xiaoyu123,Wang Bingyi1,Zhao Zhiyao123ORCID

Affiliation:

1. School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

2. Beijing Laboratory for Intelligent Environmental Protection, Beijing Technology and Business University, Beijing 100048, China

3. China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China

4. School of Arts and Sciences, Beijing Institute of Fashion Technology, Beijing 100029, China

Abstract

In this study, a novel planning and tracking approach is proposed for a mobile robotic arm to grab objects in an obstacle environment. First, we developed an improved APF-RRT* algorithm for the motion planning of a mobile robotic arm. This algorithm optimizes the selection of random tree nodes and smoothing the path. The invalid branch and the planning time are decreased by the artificial potential field, which is determined by the specific characteristics of obstacles. Second, a Fuzzy-DDPG-PID controller is established for the mobile robotic arm to track the planned path. The parameters of the PID controller are set using the new DDPG algorithm, which integrated FNN. The response speed and control accuracy of the controller are enhanced. The error and time of tracking of the mobile robotic arm are decreased. The experiment results verify that the proposed approach has good planning and tracking results, high speed and accuracy, and strong robustness. To avoid the occasionality of the experiments and fully illustrate the effectiveness and generality of the proposed approach, the experiments are repeated multiple times. The experiment results demonstrate the effectiveness of the proposed approach. It outperforms existing planning and tracking approaches.

Funder

National Natural Science Foundation of China

Project of Cultivation for Young Top-notch Talents of Beijing Municipal Institutions

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3