Iterative Learning Control for AGV Drive Motor Based on Linear Extended State Observer

Author:

Jiang WeiORCID,Zhu GangORCID,Zheng Ying

Abstract

In order to solve the problems of repetitive and non-repetitive interference in the workflow of Automated Guided Vehicle (AGV), Iterative Learning Control (ILC) combined with linear extended state observer (LESO) is utilized to improve the control accuracy of AGV drive motor. Considering the working conditions of AGV, the load characteristics of the drive motor are analyzed with which the mathematical model of motor system is established. Then the third-order extended state space equations of the system approximate model is obtained, in which LESO is designed to estimate the system states and the total disturbance. For the repeatability of AGV workflow, ILC is designed to improve the control accuracy. As the goods mass transported each time is not same, the LESO is utilized to estimate the non-repetitive load disturbance in real time and compensate the disturbance of the system to improve the position precision. The convergence of the combined algorithm is also verified. Simulation and experimental results show that the proposed iterative learning control strategy based on LESO can reduce the positioning error in AGV workflow and improve the system performance.

Funder

the Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference23 articles.

1. Research on precise positioning technology of multi vision and laser integrated navigation AGV;He;J. Instrum.,2017

2. Adaptive robust iterative learning control with application to a Delta robot

3. Torque ripple suppression of Switched Reluctance Motor Based on iterative learning control;Pan;Acta Electrotech. Sin.,2010

4. Iterative learning sliding mode control for output-constrained upper-limb exoskeleton with non-repetitive tasks

5. A Multi-Input Single-Output iterative learning control for improved material placement in extrusion-based additive manufacturing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3