On the Optimization of Robot Machining: A Simulation-Based Process Planning Approach

Author:

Souflas Thanassis1ORCID,Gerontas Christos1ORCID,Bikas Harry1ORCID,Stavropoulos Panagiotis1ORCID

Affiliation:

1. Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and Aeronautics, University of Patras, 26504 Patras, Greece

Abstract

The use of industrial robots for machining operations is pursued by industry lately, since they can increase the flexibility of the production system and reduce production costs. However, their industrial adoption is still limited, mainly due to their insufficient structural stiffness and posture-dependent dynamic behavior, leading to limited machining process accuracy. For this purpose, the Digital-Model of a machining robot has been developed, providing a tool for virtual commissioning of the process that can be used during the process planning stage. The Multi-Body Simulation method combined with a Component Mode Synthesis have been adopted, considering flexibility of both the joints and links. On top of that, and motivated from robotic-based machining systems’ flexibility and versatility, two optimization algorithms have been developed, attempting to increase the process accuracy. A workpiece placement optimization algorithm, attempting to maximize the robot stiffness during the process acquiring knowledge from the robot stiffness maps, and a feed-rate scheduling algorithm, attempting to constrain the contour error by regulating the generated cutting forces. The capabilities and functionality of the developed model and optimization algorithms are showcased in two different case studies, with the results proving the improvements on the process accuracy after the application of the optimization algorithms. Finally, an experimental validation of the Digital-Model has been performed, to confirm the consistency between model outputs and real experimental data.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3