A Graph-Based Model Reduction Method for Digital Twins

Author:

Chakraborti Ananda1ORCID,Vainio Henri1,Koskinen Kari T.1ORCID,Lammi Juha2

Affiliation:

1. Automation Technology and Mechanical Engineering Department, Tampere University, 33720 Tampere, Finland

2. Tamturbo Oy, 33100 Tampere, Finland

Abstract

Digital twin technology is the talking point of academia and industry. When defining a digital twin, new modeling paradigms and computational methods are needed. Developments in the Internet of Things and advanced simulation and modeling techniques have provided new strategies for building complex digital twins. The digital twin is a virtual entity representation of the physical entity, such as a product or a process. This virtual entity is a collection of computationally complex knowledge models that embeds all the information of the physical world. To that end, this article proposes a graph-based representation of the virtual entity. This graph-based representation provides a method to visualize the parameter and their interactions across different modeling domains. However, the virtual entity graph becomes inherently complex with multiple parameters for a complex multidimensional physical system. This research contributes to the body of knowledge with a novel graph-based model reduction method that simplifies the virtual entity analysis. The graph-based model reduction method uses graph structure preserving algorithms and Dempster–Shaffer Theory to provide the importance of the parameters in the virtual entity. The graph-based model reduction method is validated by benchmarking it against the random forest regressor method. The method is tested on a turbo compressor case study. In the future, a method such as graph-based model reduction needs to be integrated with digital twin frameworks to provide digital services by the twin efficiently.

Funder

Business Finland

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilizing Causal Learning for Cognitive Management of 6G Networks;2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN);2024-05-05

2. Graph Theory to Achieve the Digital Transformation in Managing Freight Transportation Corridors;Mobile Networks and Applications;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3