Model Predictive Control for Formation Placement and Recovery of Traffic Cone Robots

Author:

Li Zhiyong12ORCID,Chang Siyuan1,Ye Min1ORCID,Jiao Shengjie1

Affiliation:

1. National Engineering Research Center of Highway Maintenance Equipment, Chang’an University, Xi’an 710065, China

2. Henan Gaoyuan Maintenance Technology of Highway Co., Ltd., Xinxiang 453003, China

Abstract

The challenge of effectively managing the formation and recovery of traffic cone robots (TCRs) is addressed by proposing a linear time-varying model predictive control (MPC) strategy. This problem involves coordinating multiple TCR formations within a work area to reach a target location, which is a huge challenge due to the complexity of dynamic coordination. Unlike conventional approaches, our method decomposes the formation control problem into two main components: leader TCR motion planning and follower formation tracking control. The motion planning component involves path and velocity planning to achieve leader trajectory control, which serves as a reference trajectory for the follower. The formation tracking task extends to formation control among multiple robots to achieve the traffic cone robot formation placement and recovery task. To address the TCR input limitation problem, input constraints are considered during the design process of the MPC controllers. The effectiveness and practicality of the proposed control strategy are validated through a series of numerical simulations and physical experiments with TCRs.

Funder

National Key R D Program of China

Key Program for International S T Cooperation Projects of Hean

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3