Impact of Manufacturing Tolerances on Axial Flux Permanent Magnet Machines with Ironless Rotor Core: A Statistical Approach

Author:

Escobar Andrés1ORCID,Sánchez Gonzalo1,Jara Werner1ORCID,Madariaga Carlos2ORCID,Tapia Juan A.2ORCID,Riedemann Javier3,Reyes Eduardo4

Affiliation:

1. School of Electrical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile

2. Department of Electrical Engineering, University of Concepción, Concepción 4030000, Chile

3. Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S10 2TN, UK

4. Department of Electrical Engineering, Universidad de Magallanes, Punta Arenas 6210427, Chile

Abstract

Axial Flux Permanent Magnet (AFPM) machines with ironless rotors are an attractive and recently studied solution in low-speed applications, due to their potentially high power/weight ratio, high aspect ratio, and high efficiency. Nevertheless, these machines are prone to be affected by manufacturing tolerance during its fabrication process and consequently, the magnets may move freely inside the rotor structure. This work presents a statistical analysis of manufacturing tolerances of an AFPM machine with an ironless rotor, considering several magnet fault types. A computationally efficient superposition method is developed and implemented to obtain both the cogging torque and rated torque considering several tolerance combinations with acceptable accuracy. The results obtained from a statistical analysis of 10,000 designs of a two-stator one rotor tooth coil winding AFPM (TCW-AFPM) machine allowed us to identify the parameters with the most impact on relevant performance indicators and disclosed a substantial increase in cogging and ripple torque when unavoidable combined tolerances are present.

Funder

Agencia Nacional de Investigacion y Desarrollo, Chile

Pontificia Universidad Catolica de Valparaıso

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3