Abstract
The computational fluid dynamics (CFD) combined with radial basis function (RBF) method were adopted to obtain the response surface of the Muszynska nonlinear seal force model coefficient with two variables: eccentricity and rotation speed. During the implementation of the simulation, three coefficients of the seal force model were calculated in each sub-step according to the current state of the rotor-bearing seal system; following which the rotor dynamics analysis with varying parameters was realized. As with the traditional constant coefficient method, the first-order critical speed of the system was obtained, and the bifurcation point and oil film whirl of the system response were identified. The difference is that the coefficients of the traditional method ordinarily do not change with the state of the system. Comparing the results of the varying parameter method with those of the traditional method, it can be seen that the speeds of the system corresponding to the bifurcation and oil film whirl are different. The varying parameter rotor dynamics simulation method proposed in this paper provides a new way of analyzing the nonlinear characteristics of rotor-bearing-seal systems.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering