Development, Characterization and High-Temperature Oxidation Behaviour of Hot-Isostatic-Treated Cold-Sprayed Thick Titanium Deposits

Author:

Singh Parminder1ORCID,Singh Harpreet1ORCID,Singh Surinder2ORCID,Calla Eklavya3,Grewal Harpreet Singh4ORCID,Arora Harpreet Singh4,Krishnamurthy Anand3

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India

2. Department of Mechanical Engineering and Product Design Engineering, Industrial Transformation Training Center on “Surface Engineering for Advanced Materials”—SEAM, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

3. General Electric Vernova, Bengaluru 560067, Karnataka, India

4. Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institution of Eminence, Gautam Budh Nagar 201314, Uttar Pradesh, India

Abstract

In this work, thick deposits of pure titanium (Ti), with a thickness of around 15 mm, were additively manufactured using high-pressure cold spraying. Nitrogen was employed as the process gas. Subsequently, the deposits were subjected to hot isostatic pressing (HIP). The HIP-treated Ti deposits were analyzed for their metallurgical and mechanical characteristics with the aim of exploring the viability of using cold spraying for the additive manufacturing of Ti components. Moreover, high-temperature cyclic oxidation testing was also performed on the HIP-treated Ti deposit to understand its stability at high temperatures. SEM/EDS showed a dense structure with marginal porosity for the HIP-treated Ti deposits, without any oxide formation, which was further confirmed via XRD analysis. An average microhardness of 214 HV was measured for the HIP-treated Ti deposits, which is close to that of the commercially available bulk titanium (202 HV). The high-temperature oxidation studies revealed that the cold-sprayed HIP-treated Ti has very good oxidation resistance, which could be attributed to the formation of protective titanium dioxide in its oxide scale.

Funder

Department of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3