Erosion Analysis and Optimal Design of Sand Resistant Pipe Fittings

Author:

Song Xiaoning1,Mi Kaifu2,Lei Yu2,Li Zhengyang3,Yan Dongjia1ORCID

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Beijing Petroleum Machinery Co., Ltd., CNPC, Beijing 102206, China

3. Department of Applied Mechanics, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Erosion of solid particles in a pipe elbow containing a 90° angle is investigated by simulation methods. In the process of shale gas exploitation, the impact of solid particles carried by fluid on the inner surface wall of pipes, as well as the turbulent flow, cause the erosion of pipes, which brings about heavy economic losses for the oil and gas industry. In the impact erosion of the inner surface wall of the pipe, the worst erosion occurs at the elbow. In this study, the erosion of a pipe elbow which has been widely used in actual production is analyzed, and the influence of the fluid velocity, the solid particle size, and the wall roughness on the erosion is investigated. Additionally, the simulation results of the erosion with the rebound and freeze boundary conditions are compared, indicating that setting the freeze boundary condition could significantly improve the computational efficiency by 74% with the acceptable accuracy. In order to reduce the impact erosion in the pipe elbow containing a 90° angle, an optimal design is proposed that can reduce the maximum erosion rate by 52.4%. These results complement the research of elbow erosion and provide ideas for the optimization problem of a pipe elbow containing a 90° angle.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3