Abstract
Hybrid powertrains that combine electric machines and internal-combustion engines offer substantial opportunities to increase the energy efficiency and minimize the exhaust emissions of vehicles and nonroad working machines. Due to the wide range of applications of such powertrains, simulation tools are used to evaluate and compare the energy efficiency of hybrid powertrains for application-specific working cycles in virtual environments. Therefore, the accurate modeling of the powertrain components of a hybrid system is important. This paper presents an agile calculation tool that can generate realistic fuel consumption data of a scalable diesel engine. This method utilizes a simple efficiency model of the combustion and crank train friction model to generate the fuel consumption map in the operating area of a typical diesel engine. The model parameters are calibrated to produce accurate fuel consumption data in the initial phase of system-level simulations. The proposed method is also validated by using three real engine datasets, and the comparison of results is presented.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献