Novel FEM-Based Wavelet Bases and Their Contextualized Applications to Bearing Fault Diagnosis

Author:

Zhang Long,Zhao Lijuan,Cai Binghuan,Yang Jinwen,Tu Wenbing,Zhang Hao,Lu Yi

Abstract

Feature extraction herein refers to using an appropriate wavelet basis to filter vibration signals with the aim to reveal fault transient characteristics, which underlies bearing fault diagnosis. Wavelet transform has developed into a well-established signal processing approach with wide applications in bearing fault diagnosis. Nevertheless, a suitable wavelet basis is essential for wavelet transform to perform its best. So far, numerous wavelet bases are available for bearing diagnosis, most of which, however, have a waveform analogous to that of impulse responses of a single-degree-of-freedom system. In fact, bearings are of multi-degree-of-freedom and not totally rigid. Furthermore, a specific wavelet basis is definitely unable to accommodate all bearing vibrations, given that fault characteristics vary with bearings’ operating conditions and fault types. As such, a simulated wavelet-driven personalized scheme is proposed to improve bearing fault diagnosis for contextualized engineering practical applications. For a specific bearing of interest, personalized finite element models (FEM) with various faults are constructed and corresponding fault-induced responses are then obtained. Afterward, FEM-based wavelet bases are formulated and specified by its discrete values from such responses. Taking NU306 bearing with inner or outer defect for example, FEM-based wavelet basis is applied to the corresponding experimental signals by means of wavelet filtering. The comparisons with adaptive Morlet and impulse wavelet demonstrate that the personalized FEM-based wavelet basis match very well with the fault-induced transients present in experimental bearing vibrations and thus have a promising superiority and expandability.

Funder

National Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3